The Remez exchange algorithm for approximation with linear restrictions
نویسندگان
چکیده
منابع مشابه
The Remez Exchange Algorithm for Approximation with Linear Restrictions
This paper demonstrates a Remez exchange algorithm applicable to approximation of real-valued continuous functions of a real variable by polynomials of degree smaller than n with various linear restrictions. As special cases are included the notion of restricted derivatives approximation (examples of which are monotone and convex approximation and restricted range approximation) and the notion ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAcceleration of the Remez Exchange Algorithm for the Design of L , Optimum FIR Filters
Iii this paper a iieiv initialization scheme for tlie Reinez exchange algorithm is proposed. More specifically. tlie solution of the well Bnowii “don’t. care” filt,er design method is proposed as a iiew efficient iiiit,ializat,ioii scheiiie for t,he Reinez algorit,hm. Our proposal is inotivated by the fact that the “don’t care” least squares optiiiiuiii solution satisfies the oiie of the two ba...
متن کاملTwo Novel Implementations of the Remez Multiple Exchange Algorithm for Optimum FIR Filter Design
One of the main advantages of the linear-phase FIR filters over their IIR counterparts is the fact that there exist efficient algorithms for optimizing the arbitrary-magnitude FIR filters in the minimax sense. In case of IIR filters, the design of arbitrary-magnitude filters is usually time-consuming and the convergence to the optimum solution is not always guaranteed. The most efficient method...
متن کاملThe Remez Inequality for Linear Combinations of Shifted Gaussians
Let Gn := ( f : f(t) = n X j=1 aje −(t−λj) , aj , λj ∈ R ) . In this paper we prove the following result. Theorem (Remez-Type Inequality for Gn). Let s ∈ (0,∞). There is an absolute constant c1 > 0 such that exp(c1(min{ns, ns2} + s)) ≤ sup f ‖f‖R ≤ exp(240(min{n1/2s, ns2} + s)) , where the supremum is taken for all f ∈ Gn satisfying m ({t ∈ R : |f(t)| ≥ 1}) ≤ s . We also prove the right higher ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1976
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1976-0440868-7